پیشبینی بارش ماهانه با استفاده از الگوهای پیوند از دور و شبکۀ عصبی مصنوعی (مطالعۀ موردی: حوزۀ فلات مرکزی ایران)
Authors
Abstract:
تحقیق حاضر با هدف بررسی تأثیر شاخصهای پیوند از دور بر رخداد بارش ماهانه و پیشبینی بارندگی در حوزۀ آبخیز فلات مرکزی ایران با استفاده از مدل شبکة عصبی مصنوعی چندگامی مستقیم (DMSNN) با پارامترهای مذکور است. براین مبنا مقادیر بارش طی دورة مشترک آماری 1981-2014 در 20 ایستگاه سینوپتیک منطقۀ مورد مطالعه انتخاب شد، بهطوری که دورۀ آماری 1981- 2004 برای توسعة مدل و سالهای 2004-2014 جهت صحتسنجی مدل به منظور پیشبینی شش ماه آینده در مقیاس ماهانه استفاده شد. جهت بررسی میزان دقت مدل، مقادیر مشاهدهای و پیشبینی شدة بارندگی با استفاده از آزمونهای Z و F مقایسه شدند و به منظور بررسی کارایی مدل، معیارهای R2، RMSE و MAE استفاده شدند. نتایج نشاندهندۀ تأثیر قوی شاخص MEI و SOI بر بارش منطقه است. نتایج مدل DMSNN نشان داد که بالاترین کارایی طی یک ماه آینده به بخش جنوبی فلات مرکزی با ضریب همبستگی 81/0 و ضعیفترین نتایج به غرب حوزه با ضریب همبستگی 4/0 مربوط است. براساس نتایج بهدستآمده، شبکۀ عصبی مصنوعی ابزار مفیدی برای پیشبینی بارش ماهانه و برنامهریزی مدیریت منابع آب طی شش ماه آتی خواهد بود.
similar resources
پیشبینی بارش ماهانه با استفاده از شاخص های اقلیمی پیوند از دور با استفاده از شبکۀ عصبی مصنوعی و مدل آماری (مطالعۀ موردی: ایستگاههای همجوار ششده و قرهبلاغ)
بسیاری از متغیرهای هواشناسی از جمله بارش بهشدت به گردشهای جوّیـ اقیانوسی بزرگمقیاس وابستهاند. در پژوهش حاضر تأثیر سیگنالهای اقلیمی بر میانگین بارش ماهانۀ ایستگاههای مجاور مناطق ششده و قرهبلاغ طی دورۀ آماری 25 ساله از 1364 تا 1388 بررسی شده است. شبیهسازی بارش با استفاده از مدلهای آماری و شبکۀ عصبی انجام شده است. همبستگی سیگنالهای اقلیمی با بارش در حالتهای مختلف بدون تأخیر و با تأخیرها...
full textپیشبینی بارش و دمای متوسّط ماهانه با استفاده از الگوهای پیوند از دور به کمک شبکههای عصبی مصنوعی (مطالعه موردی: ایستگاه سینوپتیک مشهد)
full text
پیشبینی مقادیر بارش ماهانه با استفاده از شبکههای عصبی مصنوعی و مدل درختی M5 (مطالعۀ موردی: ایستگاه اهر)
بارش یکی از مهمترین اجزای چرخۀ آب است و در سنجش خصوصیات اقلیمی هر منطقه، نقش بسیار مهمی ایفا میکند. تخمین مقادیر بارش ماهانه برای اهداف مختلفی چون، برآورد سیلاب، خشکسالی، برنامهریزی آبیاری و مدیریت حوضههای آبریز، اهمیت زیادی دارد. پیشبینی بارش در هر منطقهای نیازمند وجود دادههای دقیق اندازهگیریشدهای مانند، رطوبت، دما، فشار، سرعت باد و غیره است. محدودیتهایی چون، نبود اطلاعات کافی در مو...
full textآشکار سازی تغییرات بارش ماهانه ایستگاه اهر در ارتباط با الگوهای پیوند از دور
در این مقاله با استفاده از داده های بارش ماهانه ایستگاه سینوپتیک اهر در یک بازه بلند مدت 47 ساله از سال 1960 تا 2006 میلادی، نوسانات بارش و روند تغییرات بارش مورد بررسی قرار گرفته است. نتایج استفاده از آزمون من – کندال حاکی از معنی داری تغییرات بارش ماه های جولای و اگوست ایستگاه اهر است. تحلیل های آماری رابطه بارش های ماهانه ایستگاه اهر با الگوهای پیوند از دور را مورد تایید قرار داد که در این ر...
full textمقایسۀ کارایی شبکۀ عصبی مصنوعی در پیشبینی خشکسالی هواشناسی با استفاده از پیوند از دور و پارامترهای اقلیمی (مطالعۀ موردی: جنوب استان قزوین)
خشکسالی در نگاهی کلی معلول یک دورۀ شرایط خشک غیرعادی است که به اندازۀ کافی دوام داشته و سبب عدم تعادل در وضعیت هیدرولوژیک یک ناحیه همچون افت منابع آب سطحی و زیرزمینی میگردد. هدف از این تحقیق مدلسازی پیشبینی خشکسالی هواشناسی در سه مقیاس زمانی کوتاهمدت، میانمدت و بلندمدت در ایستگاه بارانسنجی واقع در دشت جنوبی استان قزوین، با استفاده از شبکۀ عصبی پرسپترون چندلایه و با در نظر گرفتن پارامترها...
full textپتانسیلیابی مناطق توسعۀ شهری با استفاده از شبکۀ عصبی مصنوعی (مطالعۀ موردی: شهر کرمانشاه)
رشد سریع شهرنشینی و توسعة شهری بهویژه در کشورهای درحالتوسعه، به درک الگو و فرایندهای پیچیدة رشد شهری با روش علمی و کارآمد نیاز دارد. لازمة ایجاد رشد شهری پایدار و برنامهریزی توسعة شهری، درک الگوهای صحیح رشد شهری است. کرمانشاه نهمین شهر پرجمعیت کشور و یکی از چهار شهر نخست ایران از نظر حادبودن معضل حاشیهنشینی است. هدف این پژوهش، بررسی پتانسیل توسعة شهری در این شهر است. بدینمنظور، شبکة عصبی...
full textMy Resources
Journal title
volume 43 issue 2
pages 405- 418
publication date 2017-07-23
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023