پیش‌بینی بارش ماهانه با استفاده از الگوهای پیوند از دور و شبکۀ عصبی مصنوعی (مطالعۀ موردی: حوزۀ فلات مرکزی ایران)

Authors

  • ام البنین بذرافشان استادیار، گروه مرتع و آبخیزداری، دانشکدۀ کشاورزی و منابع طبیعی، دانشگاه هرمزگان، بندرعباس، ایران
  • هدی قاسمیه استادیار، گروه مرتع و آبخیزداری، دانشکدۀ منابع طبیعی و علوم زمین دانشگاه کاشان، کاشان، ایران
  • کبری بخشایش منش کارشناس ارشد آبخیزداری، دانشکدۀ منابع طبیعی و علوم زمین، دانشگاه کاشان، کاشان، ایران
Abstract:

تحقیق حاضر با هدف بررسی تأثیر شاخص‌های پیوند از دور بر رخداد بارش ماهانه و پیش‌بینی بارندگی در حوزۀ آبخیز فلات مرکزی ایران با استفاده از مدل شبکة عصبی مصنوعی چندگامی مستقیم (DMSNN) با پارامترهای مذکور است. براین مبنا مقادیر بارش طی دورة مشترک آماری 1981-2014 در 20 ایستگاه سینوپتیک منطقۀ مورد مطالعه انتخاب شد، به‌طوری که دورۀ آماری 1981- 2004 برای توسعة مدل و سال‌های 2004-2014 جهت صحت‌سنجی مدل به منظور پیش‌بینی شش ماه آینده در مقیاس ماهانه استفاده شد. جهت بررسی میزان دقت مدل، مقادیر مشاهده‌ای و پیش‌بینی شدة بارندگی با استفاده از آزمون‌های Z و F مقایسه شدند و به منظور بررسی کارایی مدل، معیارهای R2، RMSE و MAE استفاده شدند. نتایج نشان‌دهندۀ تأثیر قوی شاخص MEI و SOI بر بارش منطقه است. نتایج مدل DMSNN نشان داد که بالاترین کارایی طی یک ماه آینده به بخش جنوبی فلات مرکزی با ضریب همبستگی 81/0 و ضعیف‌ترین نتایج به غرب حوزه با ضریب همبستگی 4/0 مربوط است. براساس نتایج به‌دست‌آمده، شبکۀ عصبی مصنوعی ابزار مفیدی برای پیش‌بینی بارش ماهانه و برنامه‌ریزی مدیریت منابع آب طی شش ماه آتی خواهد بود.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش‌بینی بارش ماهانه با استفاده از شاخص‏ های اقلیمی پیوند از دور با استفاده از شبکۀ عصبی مصنوعی و مدل‏ آماری (‌مطالعۀ موردی: ایستگاه‌های هم‌جوار ششده و قره‌بلاغ)

بسیاری از متغیرهای هواشناسی از جمله بارش به‌شدت به گردش‏های جوّی‌ـ اقیانوسی بزرگ‌مقیاس وابسته‌اند. در پژوهش حاضر تأثیر سیگنال‏های اقلیمی بر میانگین بارش ماهانۀ ایستگاه‏های مجاور مناطق ششده و قره‌بلاغ طی دورۀ آماری 25 ساله از 1364 تا 1388 بررسی شده است. شبیه‌سازی بارش با استفاده از مدل‏های آماری و شبکۀ عصبی انجام شده است. همبستگی سیگنال‏های اقلیمی با بارش در حالت‏های مختلف بدون تأخیر و با تأخیرها...

full text

پیش‎بینی مقادیر بارش ماهانه با استفاده از شبکه‎های عصبی مصنوعی و مدل درختی M5 (مطالعۀ موردی: ایستگاه اهر)

بارش یکی از مهم‎ترین اجزای چرخۀ آب است و در سنجش خصوصیات اقلیمی هر منطقه، نقش بسیار مهمی ایفا می‎کند. تخمین مقادیر بارش ماهانه برای اهداف مختلفی چون، برآورد سیلاب، خشکسالی، برنامه‎ریزی آبیاری و مدیریت حوضه‎های آبریز، اهمیت زیادی دارد. پیش‎بینی بارش در هر منطقه‎ای نیازمند وجود داده‎های دقیق اندازه‎گیری‎شده‎ای مانند، رطوبت، دما، فشار، سرعت باد و غیره است. محدودیت‎هایی چون، نبود اطلاعات کافی در مو...

full text

آشکار سازی تغییرات بارش ماهانه ایستگاه اهر در ارتباط با الگوهای پیوند از دور

در این مقاله با استفاده از داده های بارش ماهانه ایستگاه سینوپتیک اهر در یک بازه بلند مدت 47 ساله از سال 1960 تا 2006 میلادی، نوسانات بارش و روند تغییرات بارش مورد بررسی قرار گرفته است. نتایج استفاده از آزمون من – کندال حاکی از معنی داری تغییرات بارش ماه های جولای و اگوست ایستگاه اهر است. تحلیل های آماری رابطه بارش های ماهانه ایستگاه اهر با الگوهای پیوند از دور را مورد تایید قرار داد که در این ر...

full text

مقایسۀ کارایی شبکۀ عصبی مصنوعی در پیش‌بینی خشکسالی هواشناسی با استفاده از پیوند از دور و پارامترهای اقلیمی (مطالعۀ موردی: جنوب استان قزوین)

خشکسالی در نگاهی کلی معلول یک دورۀ شرایط خشک غیرعادی است که به اندازۀ کافی دوام داشته و سبب عدم تعادل در وضعیت هیدرولوژیک یک ناحیه همچون افت منابع آب سطحی و زیرزمینی می‌گردد. هدف از این تحقیق مدل‌سازی پیش‌بینی خشکسالی هواشناسی در سه مقیاس زمانی کوتاه­مدت، میان­مدت و بلند­مدت در ایستگاه باران­سنجی واقع در دشت جنوبی استان قزوین، با استفاده از شبکۀ عصبی پرسپترون چندلایه و با در نظر گرفتن پارامترها...

full text

پتانسیل‌یابی مناطق توسعۀ شهری با استفاده از شبکۀ عصبی مصنوعی (مطالعۀ موردی: شهر کرمانشاه)

رشد سریع شهرنشینی و توسعة شهری به‌ویژه در کشورهای درحال‌توسعه، به درک الگو و فرایندهای پیچیدة رشد شهری با روش علمی و کارآمد نیاز دارد. لازمة ایجاد رشد شهری پایدار و برنامه‌ریزی توسعة شهری، درک الگوهای صحیح رشد شهری است. کرمانشاه نهمین شهر پرجمعیت کشور و یکی از چهار شهر نخست ایران از نظر حادبودن معضل حاشیه‌نشینی است. هدف این پژوهش، بررسی پتانسیل توسعة شهری در این شهر است. بدین­منظور،‌ ‌شبکة عصبی...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 43  issue 2

pages  405- 418

publication date 2017-07-23

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023